Telegram Group & Telegram Channel
AlphaEvolve [2025]

Очень простым критерием, по которому я отсекаю интересные "приложения AI в науке" от неинтересных, это то, была ли в итоге решена какая-то нерешённая задача. Deepmind имеет неплохую репутацию в этом вопросе, и я уже писал посты про их подобные работы - AlphaTensor, AutoNumerics-Zero и некоторые другие.

Перед нами ещё одна работа, выбивающая SOTA на разного рода математических задачах. Я очень обрадовался, увидев первым автором Сашу Новикова, с которым когда-то капельку поработал, будучи ещё безмозглым пиздюком.

Итак, перед нами идейный потомок FunSearch. Это хорошо проделанная практическая работа по масштабированию, однако, основная идея изменилась не особо.

Алгоритм применим для поиска решений "NP-задач", т.е. в которых возможна быстрая (автоматическая) оценка решения. Это вариация эволюционного поиска программы, который поддерживает популяцию решений и вместо примитивных операций над кодом использует LLM для генерации новых кандидатов.

Дьявол, конечно, в деталях, и над ними как раз хорошо поработали. Тут тебе и комбинация разных LLM, и целая процедура генерации промпта, включающая параллельно оптимизируемый мета-промпт, и оптимизация диффа вместо программы, и LLM-generated feedback, и, конечно, reward design.

Последнее особенно важно. Дело в том, что эволюционный алгоритм применяется для оптимизации какой-то непрерывной награды. Если у вас есть 10000 вариантов, из которых 9999 одинаково неработающие и 1 работающий, то все эти алгоритмы умного перебора не имеют никакого смысла.

Ставя задачу "докажите утверждение X" в пространстве всех математических доказательств, у вас нет способа сравнить два неправильных черновика между собой. Но в некоторых случаях инструменты сравнения всё же имеются.

В качестве первого примера применения алгоритма в статье описан поиск способов умножать матрицы за меньшее число умножений - та же тема, что и в AlphaTensor. Любой алгоритм по умножению 2 матриц может быть представлен как разложение определённого 3D-тензора в несколько тензоров ранга 1. Количество тензоров в разложении и определяет количество умножений. Пишите в комментариях, если это враньё, я просто цитирую.

Как я понял, находить такие разложения можно с помощью градиентной оптимизации - тензоры в разложении оптимизируются градиентным спуском под то, чтобы результирующий тензор совпадал с желаемым.

Но нет, AlphaEvolve не оптимизирует разложение. Он генерирует алгоритм, генерирующий разложение. В качестве затравки ему как раз и даётся тот самый метод градиентного спуска, после чего AlphaEvolve пытается его модифицировать. И у получаемого кода есть отличная мера качества - минимальное количество тензоров, на которое получилось разложить.

Представьте, что самый базовый алгоритм может сгенерировать разложение на 50 тензоров, а разложение на 49 уже не сходится. Если кандидат от AlphaEvolve не сошёлся даже для 50, то сразу отправляется на помойку, но если вдруг смог разложить на 49, то получает более высокий скор в рамках эволюции. Каждый кандидат запускается последовательно на всё более сложной задаче - его просят разложить на 49, 48, 47 тензоров и т.д., и со временем получаются всё более и более крутые алгоритмы оптимизации.

В результате такого процесса авторам удалось отыскать с помощью улучшенной оптимизации кучу новых рекордно коротких разложений и сильно обойти AlphaTensor, который был заточен именно под эту задачу. В статье есть ещё много примеров успешных применений AlphaEvolve на практике, каждое из которых можно было бы разбирать отдельными постами.

Данная работа является крутейшим примером того, как LLM может быть использован для научных открытий. Нет, не надо генерировать вот эту срань. Нужно применить человеческую креативность для того, чтобы переформулировать "NP-задачу" в задачу генерации кода, который можно оценить непрерывным скором, и только потом дёргать LLM в качестве генератора кандидатов.

Но это пока кто-то не изобретёт что-нибудь получше.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/283
Create:
Last Update:

AlphaEvolve [2025]

Очень простым критерием, по которому я отсекаю интересные "приложения AI в науке" от неинтересных, это то, была ли в итоге решена какая-то нерешённая задача. Deepmind имеет неплохую репутацию в этом вопросе, и я уже писал посты про их подобные работы - AlphaTensor, AutoNumerics-Zero и некоторые другие.

Перед нами ещё одна работа, выбивающая SOTA на разного рода математических задачах. Я очень обрадовался, увидев первым автором Сашу Новикова, с которым когда-то капельку поработал, будучи ещё безмозглым пиздюком.

Итак, перед нами идейный потомок FunSearch. Это хорошо проделанная практическая работа по масштабированию, однако, основная идея изменилась не особо.

Алгоритм применим для поиска решений "NP-задач", т.е. в которых возможна быстрая (автоматическая) оценка решения. Это вариация эволюционного поиска программы, который поддерживает популяцию решений и вместо примитивных операций над кодом использует LLM для генерации новых кандидатов.

Дьявол, конечно, в деталях, и над ними как раз хорошо поработали. Тут тебе и комбинация разных LLM, и целая процедура генерации промпта, включающая параллельно оптимизируемый мета-промпт, и оптимизация диффа вместо программы, и LLM-generated feedback, и, конечно, reward design.

Последнее особенно важно. Дело в том, что эволюционный алгоритм применяется для оптимизации какой-то непрерывной награды. Если у вас есть 10000 вариантов, из которых 9999 одинаково неработающие и 1 работающий, то все эти алгоритмы умного перебора не имеют никакого смысла.

Ставя задачу "докажите утверждение X" в пространстве всех математических доказательств, у вас нет способа сравнить два неправильных черновика между собой. Но в некоторых случаях инструменты сравнения всё же имеются.

В качестве первого примера применения алгоритма в статье описан поиск способов умножать матрицы за меньшее число умножений - та же тема, что и в AlphaTensor. Любой алгоритм по умножению 2 матриц может быть представлен как разложение определённого 3D-тензора в несколько тензоров ранга 1. Количество тензоров в разложении и определяет количество умножений. Пишите в комментариях, если это враньё, я просто цитирую.

Как я понял, находить такие разложения можно с помощью градиентной оптимизации - тензоры в разложении оптимизируются градиентным спуском под то, чтобы результирующий тензор совпадал с желаемым.

Но нет, AlphaEvolve не оптимизирует разложение. Он генерирует алгоритм, генерирующий разложение. В качестве затравки ему как раз и даётся тот самый метод градиентного спуска, после чего AlphaEvolve пытается его модифицировать. И у получаемого кода есть отличная мера качества - минимальное количество тензоров, на которое получилось разложить.

Представьте, что самый базовый алгоритм может сгенерировать разложение на 50 тензоров, а разложение на 49 уже не сходится. Если кандидат от AlphaEvolve не сошёлся даже для 50, то сразу отправляется на помойку, но если вдруг смог разложить на 49, то получает более высокий скор в рамках эволюции. Каждый кандидат запускается последовательно на всё более сложной задаче - его просят разложить на 49, 48, 47 тензоров и т.д., и со временем получаются всё более и более крутые алгоритмы оптимизации.

В результате такого процесса авторам удалось отыскать с помощью улучшенной оптимизации кучу новых рекордно коротких разложений и сильно обойти AlphaTensor, который был заточен именно под эту задачу. В статье есть ещё много примеров успешных применений AlphaEvolve на практике, каждое из которых можно было бы разбирать отдельными постами.

Данная работа является крутейшим примером того, как LLM может быть использован для научных открытий. Нет, не надо генерировать вот эту срань. Нужно применить человеческую креативность для того, чтобы переформулировать "NP-задачу" в задачу генерации кода, который можно оценить непрерывным скором, и только потом дёргать LLM в качестве генератора кандидатов.

Но это пока кто-то не изобретёт что-нибудь получше.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/283

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Knowledge Accumulator from vn


Telegram Knowledge Accumulator
FROM USA